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We show that combined heat transfer in a dispersed medium can be modeled numeric- 
ally by treating convective and radiative-conductive heat transfer separately. 
We refine the radiative heat-transfer model by comparison with experiment. 

In the develoment of a thermal shield of various technical system and aggregates of dis- 
persed materials, it is necessary to study their thermal insulation properties in detail. The 
heat-transport mechanism in such materials is rather complicated, and includes heat transport 
directly as a result of the thermal conductivity of the material (conductive heat transport) 
and heat transport by radiation (radiative heat transport). If the porous medium is filled 
with gas, there mayalso be convective heat transfer. A purely experimental study of heat- 
transport processes and the resulting heat fluxes is difficult, and, therefore, a simultane- 
ous study by full-scale and numerical experiments can give good results [i, 2]. 

In the present article we consider the methodical aspects of the mathematical modeling 
of combined heat transfer in a dispersed material based on optically transparent dispersed 
silicic materials with a 90% and more porosity of the sample used. The samples were rect- 
angular parallelepipeds. It is required to determine the temperatureof the lower surface of 
the sample for a specified time dependence of the temperature of its upper surface. 

A general formulation of this problem includes the combined consideration of the system 
of equations describing radiative transport (taking account of absorption, emission, and scat- 
tering) and the laws of conservation of energy and momentum in the gas. The purpose of the 
study is to construct a mathematical model, to ascertain the role of each heat-transfer mech- 
anism, to compare various methods of calculation, and to develop the optimal approach to the 
solution of the problem. As the most reasonable and technically relatively simply realizable 
approach we propose a procedure based on the separate treatment of convective and radiative- 
conductive heat transfer. 

i. Investigation of Convective Heat Transport in a Porous Medium. We describe the non- 
linear filtration of a liquid in a porous medium by the Navier-Stokes equations, which in the 
Boussinesq approximation, taking account of Darcy's law, we write in the following form [3]: 

OV 1-vp + ~AV+ ~gT--/fV, (1) 
0---7--+ ( V v ) V  - -  O 

OT 
- -  + (~v) T = zAT, (2) 

0t  

v~=0, (3) 
where K = vdij/Cr Cr = kr is the penetrability, which characterizes the geometrical 
properties of the porous medium, cm2; the value of Cr does not depend on the kind of filter- 
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ing liquid; k~i is the permeability, cm/sec. We introduce the following dimensionless quanti- 
ties which we denote by a tilde over the letter: 

T = 7 '  ~ H ~" v [~gHa, y=VH, x=~H, t = ?  ~ ..... , I f = R H  ~ 

In solving the Navier-Stokes equations in two-dimensional geometry for an incompressible 
liquid or_gas it is generally convenient to introduce as new variables the curl of the velocity 

= curl V and the stream function ~(Vx = 8~/3y, Vy = -8,/8x). Then m = mv/H 2, ~ = ~, and, 
omitting the tilde over dimensionless quantities, Eq. (i) becomes 

This equation is inconvenient for a numerical solution, however, since in using an implicit 
longitudinal-transverse scheme [4] the presence of second derivatives of the stream function 
on the right-hand side imposes rigid constraints on the time step ~. In view of this, we write 
Eq. (4) for Ky > Kx in the form 

O (_~y ) O (OCp oa~=Ao__Kvo+(K__Kv) 02. + OT ~ f o --~v\-g-x } ~v--7- ~ , ,  (5) 
at 

and approximate Eq. (5) in the following way: 

~--~ 

x12 
-- + Lx (~, ~) + Lg (~, co) = ~-Tx + ~y -- Kv ~ + (Kx -- Kv) ~v + T ~ 

i 

~ L~ (,, ;) + L. ( , ,  go) = % + $_ - & ~  + ( K ~ -  K.) ~ .  + T~. 

(6) 

This method of solving the Navier-Stokes equations, taking account of Darcy's law of filtra- 
tion, does not impose additional constraints on the step �9 for any values of Kx and Ky. 

We consider problem (1)-(3) in a closed cavity of rectangular cross section. The upper 
wall is maintained at a constant temperature To = 1500~ the lateral walls are thermally in- 
sulated (ST/Sn = O, x = x0, x = XN), and a boundary condition of the third kind 8T/Sn = sT, 
with ~ = 0.5, is specified onthe lower face y = Y0- The acceleration makes an angle of 45 ~ 
with a lateral wall, which ensures the development of thermal convection (here g = 3-9.8 m/ 
sec2). The density p = 1.29"10 -3 g/cm 3. 

The numerical calculations were performed by an implicit longitudinal - transverse differ- 
ence scheme using boundary conditions taken from [4], with the exception of the equation for 
m which was solved by scheme (6) without imposing additional constraints on the time step. 
In the region ~ = 2, H = i, the problem was solved on a space net with 21 nodes in each dir- 
rection. ~0 = 2"107, Pr = i. Figure 1 shows the results of caclualtions for anisotropic fil- 
tration (Kx = 5"10 s, Ky = 5.107 ) corresponding to the sample studied. It is clear that the 
temperature distribution is determined solelybythe thermal conduction, and does not depend on 
the structure of the flow. Such a situation is not typical for all cases. For example, cal- 
culations show that with an increase in the permeability (Kx ~ Ky = 104 ) the contribution of 
the convective component of the heat transfer is appreciable. 

Thus, under the conditions considered, defined by the anisotropic permeability tensor 
(Kx = I0~-i06, Ky = 106-108), we can restrict ourselves to taking account of only radiative- 
conductive heat transfer in constructing a mathematical model. 

2. Radiative-Conductive Heat Transfer. To describe the transport of radiation inside 
a sample it is necessary to take account of the dependence of the optical coefficients of the 
material on frequency, temperature, and density, and to solve the problem in three-dimensional 
space. All this makes the mathematical model very complicated for numerical calculation. At 
the same time, studies showed that this complicated formulation is largely unjustified in view 
of the lack of detailed information on the optical and thermophysical properties of a dis- 
persed medium. The data in the literature on dispersed materials is essentially not system- 
atized. 

In order to construct an effective mathematical model of the phenomenon under study, we 
used the general methodology of a numerical experiment [ i, 5]. We studied the problem of 
radiative-conductive heat transfer in two formulations. In the first formulation we took ac- 
count of radiative heat transfer by solving the radiative transport equation directly and, in 
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i s o t h e r m s :  T 2 = 1 . 4 0 . 1 0  ~, T~ = 1 . 4 7 . 1 0  ~, T~ = 1 . 5 5 . 1 0  ~, 
Ts = 1 . 6 2 " 1 0  ; ,  Ts = 1 . 7 0 " 1 0  ; ,  T~ = 1 . 7 7 . 1 0  ~, Ts = 1 . 8 5 . 1 0  ~, 
T9 = 2 . 0 0 ' 1 0  ~. A l l  q u a n t i t i e s  a re  d i m e n s i o n l e s s .  

the second formulation we used the radiative heat conduction approximation. The second meth- 
od considerably simplifies the computational process, and makes it relatively easy to solve 
the problem in a two-dimensional formulation. The computational procedure within the frame- 

work of the first approach is more complicated, and the problem was solved in a one-dimension- 
al formulation. 

To a large degree the one-dimensional formulation was confirmed by the conditions of a 
full-scale experiment. In addition to simplifying the numerical solution, it makes it rela- 
tively easy to investigate the effect of various factors on radiative heat transfer. 

i ~ We write the system of equations for conductive-radiative heat transport: 

l 

CO/~ [ 
l~ -~x  -~- • - • s v  I,g~ (~, F') d~' + • (7)  

2 .,  
- - 1  

l =o 

(~, 0 = .;i'!:~.l 4d~] ,.d,., W 
- - 1  0 

cOT Ow _t_ 0 [ k OT1 
~c at = - a x  7 7 [  77-~ ] ' 

my = Ksv,+Kav. We c o n s t r u c t  t h e  s o l u t i o n  i n  t h e  domain R = {0 < x < f l ,  0 < t < tM}  f o r  t h e  
following boundary and initial conditions: 

(0, ~, t ) = B v [ T ( 0 ,  /)1, ~ > 0 ;  Iv(H, ~, t ) = B ~ I T  w(t)], ~ < 0 ;  (8)  

COT - - ( 0 ,  t)=0; T(H, t)=r~(t); r(x, 0 ) : r  ~ (9) 
COx 

where Tw(t)  and T~  a r e  g iven  f u n c t i o n s .  

We s o lve  t he  r a d i a t i v e  t r a n s p o r t  e q u a t i o n  n u m e r i c a l l y  by the  method of  d i s c r e t e  o r d i n -  
a t e s ,  s i m i l a r  to  t h a t  used in  [6 ] .  We r e w r i t e  t he  e q u a t i o n  f o r  t he  t r a n s p o r t  of  Jv = Iv - By 
along the  d i r e c t i o n  V = ~ i ,  1 ~ i ~ N, in  t he  form 

N 

~ ~ + ~"J" = ~ ~J~  - ~ o - - f -  ' ( lO)  
n = [  

where an and ~i are the weights and nodes of the N-point Gaussian quadrature formula. We in- 
troduce the subdivision 0 = x0 & xz < ... < xM = H and the notation Ji(xs) = Jis, B[T(xs)] = 
Bs, ~ is  = K~x i s /~ i .  
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/ x~ --  x~+. ~ < 0, 
Ax~ [ xs--xs-1 ,  P i ~ O ,  

and omit the subscript v for brevity. The integration of (I0) along the segment Axis, under 

the condition that 8Bv/Sx depends only on T and v on this segment, gives for ~i # 0: 

os+~ s + X~ anJn + B~+~ B~ 
k =  I 

5 = -- sign Di, A~ := exp ( - - ~ ) .  

( i i )  

For gi = 0 we have from Eq. (i0) 

N 

J~ • ~ (12) s =  2-'~ ~ a'Sn" 
n = [  

B o u n d a r y  c o n d i t i o n s  ( 8 )  t a k e  t h e  f o r m  

J ~ = 0 ,  ~t~<0; J ~ : 0 ,  ~ > 0 .  

To t a k e  a c c o u n t  o f  t h e  s p e c t r a l  d e p e n d e n c e  o f  t h e  r a d i a t i o n  we d i v i d e  t h e  f r e q u e n c y  
r a n g e  i n t o  t h e  i n t e r v a l s  0 -- ~0 < v l  < . - .  < VR < ~ and  a s sume  t h a t  i n  e a c h  i n t e r v a l  A~ = 
( ~ - 1 ,  ~ )  t h e  o p t i c a l  c o e f f i c i e n t s  a r e  i n d e p e n d e n t  o f  f r e q u e n c y .  By i n t e g r a t i n g  ( 1 1 )  and  
(12) with respect to frequency over As we obtain 

l N 

x-! ~ anJ~ l, p~ = O, 
2• ~ ( 1 3 )  

t Z ~  1 

1 - - A  u T ~l ~ ,  . ~ l , ~  pZ] ~+~Ai' + -i~s [_:f___ ~ a~as ~t'~+8-- ~j, ~,~0,  ju  

n =  1 

where 

g~dv, ~ ~dv,  Ps = 2oT4 as, 
A t A l  

l 
z$ 

t 15 ~ xSdx t hvz/kT~, 
a s = ~ -  e x p ( x ) - - 1 '  z s =  

l - - 1  
2 S 

We calculate the heat fluxes with the formula 

: 5 ,67.10 -~ g/'cm3deg 4 . 

N R 

n = l  1 = 1  

We solve system (13) by the Seidel iterative method, and stop the iterations when 
max [Ws--~gs[<smaxlWs[ , where @s is the value of Ws in the preceding iteration, e = i0 -~ 

r S 

As an initial approximation, we take the distribution of Jis in the preceding time step. 

We approximate the heat-conduction equation by an implicit scheme, and use the pivotal 
method to solve the resulting linear algebraic system with a tridiagonal matrix. 

2 ~ . In the radiative heat-conduction approximation we describe the temperature distribu- 
.tion inside the sample by the equation 

p c - -  
0T O ar  (15) 
of == o-77-  ] '  
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where k = (k I, k 2, k s) is the anisotropic variable thermal conductivity, including conduct- 
ive and radiative components. The lateral and lower surfaces of the sample are assumed therm- 
ally insulated, 8T/3n = 0. On the upper surface we specify the time dependence of either the 
temperature T(t)Ix=H = TW(t), or the heat flux. At time t = 0 the temperature of the sample 
is known. It is required to find the temperature of the lower surface of the sample. For a 
numerical solution we limit ourselves to a two-dimensional formulation of the problem with a 
scalar thermal conductivity kx = ky = k. We solve Eq. (15) by the method of variable direc- 
tions, for which we write the following conservative longitudinal-transverse scheme [7]: 

z12 hi+l+h~ h~+, hi+ 1 - ~ - ~ i ~ /  + 

+ ~ lj§ [ I:+~ ,~--/~-+~ -77 - j ]  + lj ' 

/ Xi+l,~ Xi,J _~ 

+ 
h ~ ~- l j+ 1 + l j  L l j+l ~ I~+1 ~ / -~ l~ ; 

l 1 
x i + , , J  = - ~ - I x  (Ti+l,j) ~- 7~(T~,j)]; X~,~+I -- T [~r • X (T~,j)]. 

Here hi and lj are the mesh sizes in the x and y directions, and Ti,j = Tni,j, Ti,j = Tn+�89 
~i,j = Tn+li,j, X = k/pc. 

The effective thermal conductivity k was calculated as the sum of the thermal conductiv- 
ity kcond of a porous material and the radiative thermal conductivity krad 

k = ~ondbc  krad. (17) 

Under the assumption of local thermodynamic equilibrium in the sample, we have [8] 

krad--  16aITS/3, ( 1 8 )  

where s is the average value of the Rosseland mean free path. In our case, s is defined as 
i = [~7(T)] -I Here 7(T) is the absorption coefficient for the radiation, and a is a numeric- 
al factor which from now on is found from a comparison with more accurate calculations with 
the preceding model (7)-(9). 

3. Effective Model of Radiative Heat Conduction. We performed parallel numerical cal- 
culations by the two methods described above for the following parameters: L = 6 cm, H = i- 
6 cm, Pmater = 2.2 g/cm 3, porosity of sample P = 0.97, which corresponds to 0 = Pmater(l - 
P) = 0.066 g/cm 3, c = 729 J/kg.K, kmater = 1.36 W/m.K. In accordance with [9, I0], kcond = 
kmaterC2p = 1.44.103 cm/sec.K, where Cp = 0.103 is the unit cell parameter of the material, 
determined from its porosity. It should be noted that the thermal conductivity model used 
takes account of the actual structure of the material. 

The first calculations were performed for the temperature dependence of the scattering 
coefficient <~ given in Table I, which is based on data in [9, i0]. It was assumed that 
for dispersed materials in which a characteristic dimension of the pores is appreciably 
larger than the wavelength of the radiation, the absorption and scattering coefficients are 
usually calculated for a single scatterer, and then the result is multiplied by the number of 
scatterers per unit volume. 

It should be noted that this method of determining the coefficients is approximate. 
Therefore, these coefficients can be considered as the first approximation for the construction 
of a mathematical model. It is known that the absorption coefficient for visible light is 
much smaller than the scattering coefficient. Since we did not have more accurate informa- 
tion, we assumed that <a = 10-2<s. We assumed that all the optical coefficients are indepen- 
dent of frequency and that the scattering is isotropic [g~(D, D') ~ i]. 

Figure 2 shows the time dependence of the temperature of the upper wall (curve i) and that 
of the lower wall for various sample thicknesses (curves 2-4) calculated with the radiative 
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Fig. 2. Time dependence of the temperature in the radiative" 
conductive heat transfer problem: l) Tw(t) of the upper wall; 
temperature of thelower wall calculatedwith the radiative 
heat transport model with: 2) H = 2 cm, 3)H = 2.5 cm, 4) H = 
3 cm; 5, 6, 7) calculated in the radiative heat conduction ap- 
proximation with H = 2 cm; 8, 9, i0) H = 3 cm; 5, 8) = = 0.i; 
6, 9) ~ = 4; 7, i0) ~ = i. T is in ~ and t in min. 

Fig. 3. Results of calculations in the "gray material" ap u 
proximation with the function Tw(t) (curve i) for ~a = 0.01~~ 
(curve 2), <a = <~ (curve 3), and without taking account of 
radiative heat transfer (curve 4). 

TABLE i. Scattering Coefficient of Sample Material 

T, ~ 

~ o  Cm=1 . 

200 ~300 400 

480--630 130--170 90--120 

5oo 1~5o lo5 

500 

77--i00 

95 

600 

73--97 

8 5  

700 

70--95 

80 

800 ' 

70--95 

8 0  

transport model. For H = 4 cm there is practically no heating of the lower wall. A decrease 
of the sample thickness naturally leads to stronger heating of the lower wall and to a shift 
of the temperature maximum to the left along the t axis. Calculations with different spatial 
nets {M = i0 and 20) gave nearly the same results. The maximum differences (about 10%) occur- 
red at small values of t near x = H. On the surface x = 0 the differences did not exceed 2- 
3%. In view of this, subsequent calculations with the first model were performed with i0 nodes. 

Curves 5-10 in Fig. 2 show the time dependence of the temperature of the lower surface 
of the sample calculated under these same conditions with the radiative heat conduction model 
with various values of ~. In this formulation the problem is one-dimensional. It was solved 
on uniform 5 • 21 and 5 • 41 nets. Curves 5-7 correspond to H = 2 cm, and curves 8-10 to H = 
3 cm. With a decrease of ~, i.e., with an increase of the effective mean free path, the tem- 
perature of the lower surface of the sample increases markedly, and the maximum temperature 
is displaced toward the left. The results of the calculations with theradiative heat conduc- 
tion model are in good agreement withanalogous results calculated with the radiative trans- 
port model for a corresponding choice of ~. For this formulation of the problem ~ = s 0 = 0.4. 
For samples of different thickness not only the magnitude, but also the position of the maxi- 
mum of the temperature curve agree within 1-10%. Thus, by comparing these calculations we 
can construct an effective model of radiative heat conduction. 

It should be noted that ~ can be chosen in this way only for parallel calculations with 
the two models. The value of ~ depends strongly on the heating conditions, and cannot be as- 
sumed to depend only on the material. At the same time, obtaining such a value of ~ for sev- 
eral different versions by comparing the results calculated with the two models is very use- 
ful for mathematical modeling in formulations more complicated than one-dimensional. For 
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example, such a model can be effectively used to study combined heat transfer when the con- 
tribution of the convective component cannot be neglected. In order to describe the phenom- 
enon in this case it is necessary to use Eqs. (1)-(3) with a thermal conductivity changed on 
the basis of the value of ~ obtained in this way. 

4. Refinement of the Radiative Transport Model. The results of the next series of cal- 
culations are compared in more detail with experimental data for a specific sample of thickness 
H = 1 cm. The temperature of the upper surface was specified by the function Tw(t) found from 
experiment and shown by curve i of Fig. 3. Curves 2-4 in this figure show T(0, t) for various 
versions of the calculation. 

The calculation of radiative heat transport is made difficult by the lack of reliable data 
on the spectral optical coefficients. For our purposes the rather accurate data on the op- 
tical properties of quartz glass in [ii] are very approximate, since they do not take account 
of the disperse structure of the material. This structure can turn out to be very important 
for determining the optical properties, since the characteristic dimensions of the structure 
of the material (2-10 pm) are comparable with the wavelength of the thermal radiation. In view 
of this, the data in [ii] can be used only as an initial approximation for constructing a 
model to describe radiative heat transport. 

The first calculations, like the preceding series, were performed in the "gray material" 
approximation. One purpose of the calculations was to find the importance of the contribu- 
tion of radiative heat transport to the total heat transfer in the sample. This calculation 
gave a maximum temperature of 970~ which is 300~ higher than in calculations which neg- 
lect radiation. An increase in absorption by a factor of i00 lowers the temperature somewhat, 
but it remained appreciably higher than in the calculations which neglected radiation. This 
shows that radiative heat transfer makes the predominant contribution to energy transport in 
the system under consideration, which shows the necessity of a more detailed account of this 
mechanism. 

In order to construct a model of radiative transport in this medium, we again turn to 
the data in [ii]. The characteristic form of the dependence of the absorption coefficient on 
wavelength is the following: for 0.3 pm < I < 4.5 pm the material is practically transparent 
(<a ~ 10 -3 cm-Z), and outside this range the absorption coefficient increases by several 
orders of magnitude. At the temperatures of the present problem (T~0.1 eV) there is prac- 
tically no radiative transport in the range X < 0.3 ~m. For ~ > 5 pm the variations of <a 
are rather large, but they occur against a background of <a = 50 cm -I, i.e., the material is 
practically opaque. A previous test of the mathematical modeling of problems of the dynamics 
of a radiating gas justifies the use of the following two-group approximation in solving the 
radiative transport equation: 

1 Xa, ~ < 4 . 8  ~m, 
•  = '  • (19) 

a ' ~ > 4,8 ~m. 

Although this approximation is very rough, it should represent the course of the process bet- 
ter than the "gray material" approximation. There is no point in introducing a large number 
of spectral groups in view of the lack of more detailed information on the optical coefficients. 

Let us consider how the temperature distribution changes with a change of the optical 
properties in the two-group model. This series of calculations was performed simultaneously 
with an experimental study for a sample of thickness H = 1 cm in order to choose a final math- 
ematical model. 

Radiative transport calculated in the two-group approximation with <Is = <~ <IIa= 
O.01K~ <IIs = 0, <IIa= 30 cm -~ leads to the value T' = 429 ~ where T' is the deviation of 
the temperature of the lower wall at the time t = 1.7 min from its initial value. The lack 
of reliable data on the optical coefficients necessitates varying them over wide limits. Cal- 
culations showed that the optical properties of the material have a very strong effect on 
heat transport in the sample (Fig. 4). Thus, tripling the value of <Is lowers the temperature 
T' to 320 ~ , and increasing KIs by a factor of five decreases T' to 295 ~ A further increase 
in scattering has practically no effect. Setting <IIa= 50 cm -z lowers T' at once to 240 ~ . 
Setting <IIa = 50 cm -x and <I s = 5<~ simultaneously gives T' = 220 ~ . In general, an in- 
crease of <IIa decreases T' more strongly than a change of other optical coefficients. 

It is known [ii] that <I a should increase with an increase in temperature. By setting 
K I = 0.01K~ we thus assume that <~ is a decreasing function of the temperature, which is 
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Fig. 4. Results of calculations in the two- 
group approximation: i) <Is = <~ <I a = 
0.1K~ <IIa = 20 cm-Z;2) <Is = 3<~ KIa = 
0.1K~ <IIa = 30 cm-Z;3) KIs = 3<~ <Ia = 
0.1K~ <IIa = 50 cm-Z; 4) <Is = 3K~ <la = 
0.006K~ <IIa = 70 cm-Z; 5) ~Is = 3<~ 
KIa = 0.01<~ <IIa = i00 cm -z 

certainly not true. In view of this, we assumed that the absorption coefficient in the short- 
wave region of the spectrum is given by the formula 

~ = 50 + I 0-~ (T (~ - 300) 2 (m') ( 2o ) 

This choice of the temperature dependence of <Ia is determined by the overall regularities of 
the increase of the absorption coefficient with increasing temperature. Calculation with 
this <la and <Is = <~ <IIa = 70 cm -z gives T' = 250 ~ . 

The position of the boundary between the two spectral groups turns out to be very import- 
ant. Thus, calculations showed that the displacement of the opacity boundary from ~ = 4.8 pm 
to I = 2 pm increases the temperature of the lower wall by 130-170 ~ in various versions. Thus, 
it is clear that the radiative transport model employed has a substantial effect on the cal- 
culated results. Moreover, data obtained in various versions may turn out to be useful in de- 
signing future thermal insulation coatings, since at the same time the temperature dependence 
of the optical properties of the material is traced. 

However, in order to choose a radiative transport model which adequately describes heat 
transfer for a specific thermal insulation material, it is necessary to know the relation be- 
tween numerical and full-scale experiments. The latter shows that for the sample under con- 
sideratin T' = 150 ~ . On the other hand, a numerical experiment shows that a variation of <IIa 
affects the temperature change most strongly. Variations of the scattering coefficient, par- 
ticularly for Ks ~ 3<~ have a much smaller effect on the temperature. Assuming that <la is 
detrmined with Eq. (20), KI s = 3K~ we find which KIIs to choose in order to match data of 
full-scale and numerical experiments. This absorption coefficient for the second group turned 
out to be ~IIa = 70 cm -z. With this choice of optical properties there is good agreement of 
the calculated and experimental alues of the temperature at all times. 

Of course, a final choice of a transport model requires a comparison with data from a 
large number of experiments. However, the construction of a mathematical model of radiative 
transport in thermal insulation materials should surely be based on the study of data from 
a full-scale experiment. Clearly, other thermophysical properties of dispersed materials can 
also be determined in this way. 

NOTATION 

V, velocity; p, density; p, pressure; T, temperature of medium; K, filtration tensor; 
v, X, Sz effective kinematic viscosity, thermal diffusivity, and coefficient of thermal ex- 
pansion; g, acceleration produced by external forces; H x L, dimensions of sample; ~, curl of 
the velocity; ~, stream function; Iv(x, D, t), spectral intensity of radiation; p, cosine of 
angle between the x axis and the path of a photon; By(T), Planck function; W, radiant energy 
flux density; gv(D, ~'), scattering indicatrix; c(T), k(T), specific heat and thermal conduc- 
tivity of material; Ksv, <av, spectral scattering and absorption coefficients; %, wavelength 
of radiation. 
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NUMERICAL-ANALYTICAL MODELING OF HEAT TRANSFER 

BETWEEN A LAMINAR FLOW AND HIGHLY PERMEABLE ROUGHNESS 

Ya. Ya. Karchev and E. A. Gaev UDC 532.517.2:536.24 

A mathematical model is proposed for the thermal interaction of a laminar flow 
with a layer of small stationary streamlined obstacles. Numerical and analytic- 
al investigations exhibit characteristic zones of the flow. 

A concept that has proved useful for the solution of a number of practical problems [1-4] 
is the notion of highly permeable roughness (HPR), which we interpret in the present study as 
a plane layer 0 & x < =, 0 & z & h randomly filled with stationary streamlined obstacles. We 
assume for definiteness that the obstacles are nondeformable spheres of diameter d, which is 
much smaller than the thickness h of the HPR. Their concentration is small enough that hydro- 
dynamic and thermal interaction does not take place between them. 

Let an unbounded viscous fluid flow with temperature-independent properties move along 
the HPR. The intensity of interaction of the flow with the HPR is determined by the local 
velocity U(z) of the flow relative to the obstacles, the local temperature difference O--~ be- 
tween the fluid and the obstacles, and the concentration (number density) n of the obstacles 
per unit volume. Owing to the smallness of the concentration, 3p/Sz = 0. A mathematical 
model of the flow produced by the HPR can be written in the form of boundary-layer equations 
with source terms. The latter have a discontinuity at the line of demarcation between the 
hindered and external flows, z = h [I, 2]: 

f =/pk v, (0 - -  S, 0 z h, 
i = ( 1 )  

[ O, [ O, z > h .  

The drag coefficient k (m3/sec) of the obstacles is assumed to be constant. For small Reynolds 
numbers Re' = U~d/v < i, e.g., k = 3~vd (Stokes' law). Analogously, ~ = const and does not 
depend on the flow velocity. The hydrodynamic interaction of a flow with HPR has been inves- 
tigated in our previous work. Here we turn our attention to the heat-transfer problem. 
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